

Introduction to Artificial Lift

What are your Artificial Lift challenges?

- Gassy oil
- Heavy/viscous oil
- Sandy oil
- High water cut
- Dewatering gas wells
- Deep
- Hot
- Low fluid levels
- Offshore
- Uncertainty
- Production optimization

Increasing demand in the east

The shift toward lower volume mature wells

The case for Production Optimization Major producer operating 26,000 wells

	Plunger Wells	16,000		
	PCP Wells	4,000		
	ESP Wells	3,000		
PCP	Rod Lift Wells	1,000		
	Other / Natural Flowing Wells	5 2,000		
	Gas/Oil Meters	33,000	\geq	Integrated Field Management:
	RTU/PLC Automation	24,000		5 billion data sets every 24 hours
	Oil / Water Production Tanks	12,000		
PL D	Compressors	3,000		
GL	Water Meters	6,000		

.: A field management system is required for production optimziation.

The increasing role of unconventional oil

The shift from vertical to horizontal wells

Steam Assisted Gravity Drainage (SAGD) to mobilize heavy oil

Reaching hydrocarbons in shale

Global oil demand shifting to the east

Increasing focus on production technologies

Find and produce *more* oil and gas assets

Maximize *productivity* of existing assets

Naturally Flowing versus Artificial Lifted Oil Wells

Source: World Oil, Feb 2012

"Based on the states for which the World Oil was able to obtain a breakout of flowing wells versus those on artificial lift, the percentage of U.S. oil wells produced by artificial lift is staying steady at about 95%. That ratio has remained fairly constant throughout the past 10 years."

¹From World Oil, February, 2012.

What liquids are being lifted?

Ref: Produced Water Volumes and Management Practices in the United States (2007), Argonne National Laboratory; Sept, 2009

1. To raise fluids to the surface when:

 $P_{Reservoir} < P_{Hydrostatic} + P_{line}$

2. To increase the production rate of flowing wells by reducing the producing bottom hole pressure (PBHP = $P_H + P_L$)

Solutions:

- A. Reduce hydrostatic head pressure
- B. Reduce the amount of fluid lifted per cycle
- C. Reduce line back-pressure
- D. Add Energy

When the pressure of the liquid column keeps gas from entering the well:

Lift Technologies by Energy Source

Formation Pressure

Mechanical Assist

© 2012 Weatherford. All rights reserved.

Lift Technology by Lift Capacity (BPD)

Artificial Lift Market Share by Type (based on dollars spent)

From Spears Oilfield Market Report, Oct, 2011

- Maximum production?
- Flexibility in production rates?
- Lowest purchase cost?
- Lowest operating cost? (Efficiency, consumables)
- Reliability and up-time (Mean-Time-Between-Failures)
- Least Energy Consumption? (Best Efficiency?)
- Minimum noise and visual impact?
- Minimum footprint? (Offshore)

ALS Application Screening Values This is just a starting point!

	Gas Lift	Foam Lift	Plunger	Rod Lift	РСР	ESP	Hyd Jet	Hyd Piston
Max Depth	18,000 ft <i>5,486 m</i>	22,000 ft 6,705 m	19,000 ft <i>5,791 m</i>	16,000 ft <i>4,878 m</i>	8,600 ft 2,621 m	15,000 ft <i>4,572 m</i>	20,000 ft <i>6,100 m</i>	17,000 ft <i>5,182 m</i>
Max Volume	75,000 bpd 12,000 M ³ /D	500 bpd 80 M³/D	200 bpd 32 M³/D	6,000 bpd 950 M³/D	5,000 bpd 790 M³/D	60,000 bpd 9,500 M³/D	35,000 5,560 M³/D	8,000 bpd 1,270 M³/D
Max Temp	450°F 232°C	400°F 204°C	550°F 288°C	550°F 288°C	250°F 121°C	482°F 250°C	550°F 288°C	550°F 288°C
Corrosion Handling	Good to excellent	Excellent	Excellent	Good to Excellent	Fair	Good	Excellent	Good
Gas Handling	Excellent	Excellent	Excellent	Fair to good	Good	Fair	Good	Fair
Solids Handling	Good	Good	Fair	Fair to good	Excellent	sand<40ppm	Good	Fair
Fluid Gravity (°API)	>15°	>8°	>15°	>8°	8° <api<40°< td=""><td>Viscosity <400 cp</td><td>≥6°</td><td>>8°</td></api<40°<>	Viscosity <400 cp	≥6 °	>8°
Servicing	Wireline or workover rig	Capillary unit	Wellhead catcher or wireline	Workover or pulling rig	Wireline or workover rig Hydraulic		or wireline	
Prime Mover	Compressor	Well natu	ral energy	Gas or electric		Electric	Gas or electric	
Offshore	Excellent	Good	N/A	Limited	Limited	Excellent	Excellent	Good
System Efficiency	10% to 30%	N/A	N/A	45% to 60%	50% to 75%	35% to 60%	10% to 30%	45% to 55%

ALS Technology Application Process

- 1. Understand and predict reservoir potential performance.
- 2. Establish target production levels and conditions.
- **3.** Eliminate technically infeasible lift technologies.
 - Required performance
 - Support infrastructure (power, skill base, etc.)

4. Economic evaluation

- Acquisition, installation, & training cost
- Operating cost
- Reliability
- Repair/replacement

Artificial Lift Design Software

Lift Technology	Software
Reciprocating Rod Lift	Rod Star, SROD, XROD, QROD, others, WFT csBeamDesign
PC Pump	CFER PC Pump, Prosper, WFT proprietary
Gas Lift	Well Evaluation Model (WEM), VALCAL, Valve Performance Clearinghouse (VPC), Prosper, PIPESIM, Dynalift, WellFlo
Hydraulic Lift	Guiberson Piston Pump, SNAP, Prosper, JEMS
ESP	Dwight's SubPUMP, WEM, Prosper, PIPESIM, supplier proprietary, Borets-WFT proprietary
Capillary/Plunger Lift	WEM, WFT proprietary

Wellflo, Dynalift, JEMS and csBeamDesign are trademarks of Weatherford. All other trademarks are the property of their respective owners.

Managing production of hydrocarbons <u>as things change</u> <u>over time</u>

- Surveillance and measurement What is happening?
- Analysis Why is it happening?
- Design of solutions How can performance be improved?
- Asset management When and where?
- Reporting KPI's and feedback

SPE study group surveyed PO literature, June, 2010¹:

- Production Improvements = 3% to 20% (avg = 3,000 BPD)
- CAPEX savings = \$42,000 to \$345,000 (avg = \$200,000)
- Value of PO to Shell² from *increased* production & reduced costs:
- 70,000 BPD
- \$5 billion accumulated value

¹Ref: http://www.spegcs.org/attachments/studygroups/4/DE%20Workshop%20Literature%20Review%20Slides.pdf ²Cumulative value, SPE#128245, March, 2010.

Key Concepts for Understanding ALS

Inflow Performance Relationship (IPR) Gas Lock Cavitation Pump Turndown Ratio

Formation Pressure = *f*{distance from well}

© 2012 Weatherford. All rights reserved.

Productivity Index (PI) = <u>Flow Rate</u> Drawdown

Inflow Performance Relation (IPR)

Typical IPR versus Reservoir Drive System

Discharge?

 $\mathsf{P}_{\mathsf{L}} < \mathsf{P}_{\mathsf{P}} \leq \mathsf{P}_{\mathsf{H}}$

Gas in pump expands, but

P_L < P_P so no flow. $\mathsf{P}_{\mathsf{L}} < \mathsf{P}_{\mathsf{P}} < \mathsf{P}_{\mathsf{H}} \qquad \mathsf{P}_{\mathsf{L}} < \mathsf{P}_{\mathsf{P}} \le \mathsf{P}_{\mathsf{H}}$

Gas in pump compresses, but

P_P < P_H so no flow.

The swept volume in the pump is occupied by gas. No fluid is pumped as the pump strokes:

<u>Downstroke</u>

The gas compresses but does not have enough pressure to open the traveling valve.

<u>Upstroke</u>

The gas decompresses, but it has higher pressure than the reservoir so the standing valve remains closed.

RESULT: No fluid enters or leaves the pump.

- 1. Low pressure gas bubbles form in liquids:
 - When a pump intake is starved for liquid
 - When localized fluid pressure drops below the vapor pressure of gas in solution
 - When existing gas bubbles are ingested into pumps
- 2. Higher pressure in the surrounding fluids causes the gas bubble to implode violently.
 - Shock waves
 - Micro-jets impact surrounding fluids and surfaces

Cavitation Sequence

Cavitation Shock Wave

Shock Wave

Imploding Bubbles

Cavitation Micro-Jet

Cavitation Damage Centrifugal Pump Impeller Stage

Turndown ratio is a measure of a pump's capacity to change production volume:

Turndown Ratio = <u>Maximum Volume</u> Minimum Volume

For example, a pump capable of 10 to 50 BPD would have a turndown ratio of **5**:

Turndown Ratio = $\frac{50 \text{ BPD}}{10 \text{ BPD}} = 5$

Pumps with high turndown ratios are helpful when production volumes are expected to vary:

Turndown ratio is a measure of a pump's capacity to change production volume:

Turndown Ratio = <u>Maximum Volume</u> Minimum Volume

For example, a pump capable of 10 to 50 CuM/D would have a turndown ratio of **5**:

Turndown Ratio = $\frac{50 \text{ CuM/D}}{10 \text{ CuM/D}}$ = 5

Pumps with high turndown ratios are helpful when production volumes are expected to vary:

